Birth and Death Processes

Références

- [1] Karlin, S. and Taylor, H. M. (75), A First Course in Stochastic Processes, Academic Press: New-York.
- [2] Karlin, S. and Taylor, H. M. (81), A Second Course in Stochastic Processes, Academic Press: New-York.
- [3] Renshaw, E (91), Modeling biological populations in space and time, Cambridge University Press

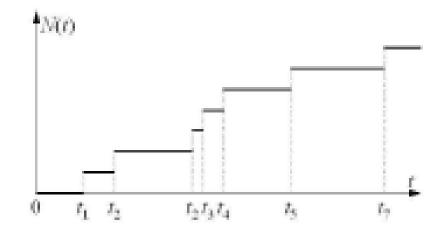
The process N(t) counts the number of events which occurred between time 0 and t.

One assumes that N(0) = 0.

Denoting T_1, T_2, \ldots the times at which the event occurred, we have that the process N(t) increases with 1 at each time.

$$N(t)=0$$
 if $t < t_1,$
$$=1$$
 if $t_1 \leq t \leq t_2,$
$$\vdots$$

$$=k$$
 if $t_k \leq t < t_{k+1},$
$$etc.$$



Examples.

- Arrivals of customers at a ticket office.
- Bus arrivals at a station.

Definition. $\{N(t), t>0\}$ is a Poisson process with intensity λ if it satisfies the two following hypotheses :

Markov Process: Events occur independently from each other.

The future only depends on the past via the current value of N(t).

Homogeneity: The probability for an event to occur between t and $t+\Delta t$ proportional to Δt (for Δt small):

$$\Pr\{N(t + \Delta t) - N(t) = 1\} = \lambda \Delta t + o(\Delta t).$$

where λ is constant \Rightarrow the process is homogeneous in time.

Differential equation system. For Δt small, we have

$$\begin{cases} \Pr\left\{N(t+\Delta t) - N(t) = 1\right\} = \lambda \Delta t + o(\Delta t), \\ \Pr\left\{N(t+\Delta t) - N(t) = 0\right\} = 1 - \lambda \Delta t + o(\Delta t), \\ \Pr\left\{N(t+\Delta t) - N(t) \ge 2\right\} = o(\Delta t). \end{cases}$$

 \Rightarrow This last equation means that two events (or more) do not occurred in a same time.

Consequence. Denoting $p_n(t) = \Pr\{N(t) = n\}$, we get

$$p_n(t + \Delta t) = p_n(t) + \lambda \Delta t \left[p_{n-1}(t) - p_n(t) \right] + o(\Delta t)$$

which implies

$$p'_{n}(t) = \lambda [p_{n-1}(t) - p_{n}(t)],$$

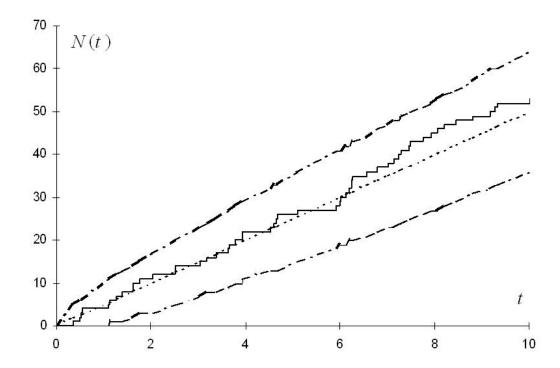
and

$$p_0'(t) = -\lambda p_0(t).$$

Distribution of the count N(t). The solution of the preceding systems implies that N(t) has a Poisson distribution :

$$p_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \quad \Rightarrow \quad N(t) \sim \mathcal{P}(\lambda t).$$

As a consequence : $\mathbb{E}[N(t)] = \lambda t$, $\mathbb{V}[N(t)] = \lambda t$.



POISSON PROCESS. MAIN PROPERTIES

Interpretation of the intensity λ .

By taking t=1, we have that $N(1)\sim \mathcal{P}(\lambda)$ and

$$\mathbb{E}[N(1)] = \lambda,$$

So λ is the number of events in average which occurred in a time unit.

We have that N(t) tends to infinity

$$\Pr\left\{N(t) = \infty\right\} \longrightarrow 1$$

POISSON PROCESS. MAIN PROPERTIES

Property of the times T_1, \ldots, T_n .

Suppose that n events occur between [0, t].

Recall that T_k is the time at which the event k occurs, then we have that

the distribution of the times $T_1 < \ldots < T_n$

is an uniform on the interval [0, t].

POISSON PROCESS.

Waiting times. Let us denote $\Delta T_i = (T_{i+1} - T_i)$ the time between two events,

$$\Delta T_i = (T_{i+1} - T_i) \sim \mathcal{E}(\lambda) \qquad \Rightarrow \qquad \Pr{\Delta T_i > t} = \exp(-\lambda t)$$

As a consequence : $\mathbb{E}(\Delta T_i) = 1/\lambda$, $\mathbb{V}(\Delta T_i) = 1/\lambda^2$ so $1/\lambda$ is the average time between two events.

Distribution of T_i . We can derive that

$$T_i \sim \gamma(i, \lambda) \quad \mathbb{E}(T_i) = i/\lambda$$

POISSON PROCESS.

Property of the exponential distribution.

Conditional distribution:

$$\Pr\{T > s + t \mid T > s\} = \Pr\{T > t\}.$$

The absence of memory (Markov) implies the 'Bus stop' paradox :

$$\mathbb{E}[T - s \mid T > s] = \mathbb{E}[T]$$

 \Rightarrow Whatever the time at which we arrive at the bus station, the mean waiting time is the mean time.

POISSON PROCESS.

Estimator of λ ?

$$\hat{\lambda} = \frac{N(t)}{t},$$

i.e. the number of events on the interval [0,t] over the considered time interval.

Likelihood.

$$V(N(t); \lambda | N(t) = n) = \lambda^n exp \left[\lambda (\sum_{i=1}^n -(t_i - t_{i-1})) \right] exp \left[\lambda - (T - t_n) \right]$$

 $\Rightarrow \hat{\lambda}$ is the maximum likelihood estimator.

APPLICATION TO GENETIC DISTANCE

Statistical model

Crossing-over occur along the chromosome according to an (homogeneous) Poisson process with intensity λ .

N(t)= number of crossing over occurring in a portion of length t:

$$N(t) \sim \mathcal{P}(\lambda t)$$
.

Probability of common origin for 2 loci (at distance t).

$$p(t) = \Pr\{N(t) \text{ is even}\} = \sum_k \Pr\{N(t) = 2k\}.$$

Remarking that $\mathrm{e}^{\lambda t} + \mathrm{e}^{-\lambda t} = 2\sum_{k \geq 0} \left[(\lambda t)^{2k}/2k! \right]$ we get

$$p(t) = \left(1 + e^{-2\lambda t}\right)/2$$

which goes to 1/2 when t goes to infinity.

APPLICATION TO GENETIC DISTANCE

Recombination probability. The 'recombination probability' is the probability for two loci (at distance t) to be issued from different parents : q(t) = 1 - p(t).

For a small t, we have

$$q(t) = \frac{1}{2} \left(1 - e^{-2\lambda t} \right) \simeq \lambda t$$

CentiMorgan (cM) definition. One cM is the distance d such as q(d)=1%, i.e.

$$d = -\frac{\log(0.98)}{2\lambda}.$$

If t is measured in cM, owe get

$$q(t) = \frac{1}{2} \left\{ 1 - \exp\left[2\lambda t \frac{\log(0.98)}{2\lambda}\right] \right\}$$
$$= \frac{1}{2} \left(1 - 0.98^t\right).$$

which also goes to 1/2 when t goes to infinity.

Model The N(t) process counts the number of births between 0 and t. The intensity of the process depends on the population size at time t:

$$\Pr\{N(t + \Delta t) = N(t) + 1\} = \lambda [N(t)] \Delta t + o(\Delta t),$$

and

 $\Pr\left\{N(t+\Delta t)=N(t)+2\right\}=o(\Delta t), \text{ no more births at the same time}$ where $\lambda(n)$ is some given function.

- The process is always without memory : the number of birth before t does not affect the number of births after t,
- The process is not homogeneous in time $(\lambda(n))$ could depend on n

Different function $\lambda(n)$:

Poisson process : $\lambda(n) = \lambda$.

Linear birth process : $\lambda(n) = \lambda n$ proportional to the population size.

Quadratic birth process : $\lambda(n)=\lambda n^2$ proportional to the number of couples in the population.

Density dependent : $\lambda(n) = \lambda n \left(1 - \frac{n}{n_{n_{\max}}}\right)$ $n_{n_{\max}}$ is the maximal capacity of the environment.

Case of linear birth process

Distribution of N(t)?

Solving a differential equation system, we get

$$p_n(t) = {n-1 \choose n_0 - 1} \left(e^{-\lambda t}\right)^{n_0} \left(1 - e^{-\lambda t}\right)^{n - n_0},$$

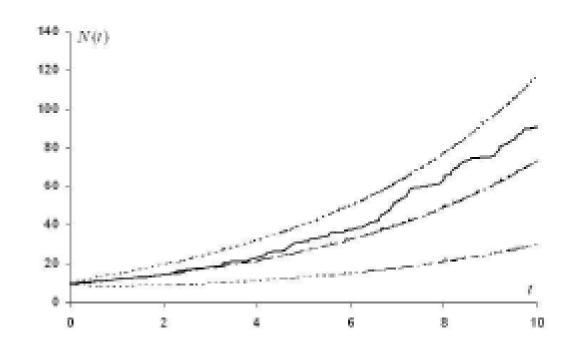
which means that the population size at time t has a binomial negative distribution : $N(t)-n_0 \sim \mathcal{NB}\left(n_0,e^{-\lambda t}\right)$,

with $1-e^{-\lambda t}$ is the probability for an individual to be born in [0,t]

$$\mathbb{E}[N(t)] = n_0 e^{\lambda t}$$

consistent with the exponential growth deterministic model.

$$\mathbb{V}[N(t)] = n_0 e^{\lambda t} (e^{\lambda t} - 1)$$



Waiting times?

Property of the exponential distribution: distribution of the minimum.

Let $X \sim \mathcal{E}(\lambda)$ and $Y \sim \mathcal{E}(\mu)$ be 2 independent random variables and Z their minimum :

$$Z = \inf(X, Y),$$

we have

$$(i)$$
 $Z \sim \mathcal{E}(\lambda + \mu)$;

$$(i) \quad Z \sim \mathcal{E}(\lambda + \mu);$$

$$(ii) \quad \Pr\{Z = X\} = \frac{\lambda}{\lambda + \mu}, \quad \Pr\{Z = Y\} = \frac{\mu}{\lambda + \mu}.$$

Waiting time

- N(t) individuals are present at time t.
- Each of them (numbered i=1..N(t)) will give birth to a new individual in random time T_i with exponential $\mathcal{E}(\lambda)$ distribution.
- Next birth will occur at time

$$t + \min_{i=1..N(t)} T_i$$

– The waiting time until the next birth is distributed as the minimum of N(t) independent exponential $\mathcal{E}(\lambda)$ random times. It is hence distributed as :

$$\mathcal{E}[\lambda N(t)] \qquad \Rightarrow \qquad \text{Mean waiting time } : \frac{1}{\lambda N(t)}$$

Counting process. At each time, the population size increases with 1.

Estimator of λ

The maximum likelihood estimator is

$$\hat{\lambda} = \frac{N(t) - n_0}{n_0 t + \sum_{i=1}^{N(t) - n_0} (t - t_i)}$$

 $N(t)-n_0$ events on $\left[0,t
ight]$ and

- n_0 live on [0,t],
- 1 lives on $[t_1, t]$,
- . . .
- 1 lives on $[t_{N(t)-n_0},t]$

PURE DEATH PROCESS

Model : Linear Death intensity $\mu(n) = \mu imes n$

Starting with n_0 , the death rate is proportional to the population size :

$$\Pr\left\{N(t+\Delta t) = N(t) - 1\right\} = \mu N(t)\Delta t + o(\Delta t),$$

Survival time. Each individual stays alive an exponential $\mathcal{E}(\mu)$ time so it has probability $e^{-\mu t}$ to be still alive at time t.

Population size has a binomial distribution :

$$N(t) \sim \mathcal{B}(n_0, e^{-\mu t}) \qquad \Rightarrow \qquad p_n(t) = {n_0 \choose n} e^{-n\mu t} \left(1 - e^{-\mu t}\right)^{n_0 - n}.$$

Waiting times. The waiting time until the next has an exponential $\mathcal{E}[\mu N(t)]$ distribution.

Counting process. At each time, the population size decreases with 1.

PURE DEATH PROCESS

Time to extinction

Let denote T_0 the time to extinction of the population, we have that

$$\Pr\left\{T_0 \le t\right\} = (1 - e^{-\mu t})^{n_0}$$

Mean Time to extinction

$$\mathbb{E}[T_0] = \mathbb{E}[\Delta T_0 + \Delta T_1 + \ldots + \Delta T_{n_0-1}] = (1/\mu) \times (0.577 + \log(n_0))$$

Estimation of μ

$$\hat{\mu} = \frac{n_0 - N(t)}{(n_0 - N(t))t + \sum_{i=1}^{N(t)} t_i}$$

Model. Linear intensities.

Both probabilities to observe either a death or a birth between t and $t+\Delta t$ are proportional to Δt and to the population size N(t)

Differential equation system. Following the preceding models, we get

$$p_n(t + \Delta t) = p_n(t) \times [1 - n(\lambda + \mu)\Delta t]$$
$$+p_{n-1}(t) \times (n-1)\lambda \Delta t$$
$$+p_{n+1}(t) \times (n+1)\mu \Delta t$$
$$+o(\Delta t).$$

which implies

$$p'_n(t) = -n(\lambda + \mu)p_n(t) + (n-1)\lambda p_{n-1}(t) + (n+1)\mu p_{n+1}(t)$$

.... difficult, but solvable.

Remark: other intensities

Other intensities $\lambda(n)$ and $\mu(n)$ (quadratic, density-dependent, etc.) can be considered.

We then get the general differential equation system

$$p'_n(t) = -[\lambda(n) + \mu(n)]p_n(t) + \lambda(n-1)p_{n-1}(t) + \mu(n+1)p_{n+1}(t)$$

which is not solvable in a close form in general.

 \Rightarrow The system can yet be studied using computer simulations.

Case of an initial population $n_0=1$. Solving the differential equation system, we get

$$p_0(t) \ = \ \mu g(t) = ext{probability of extinction before } t$$

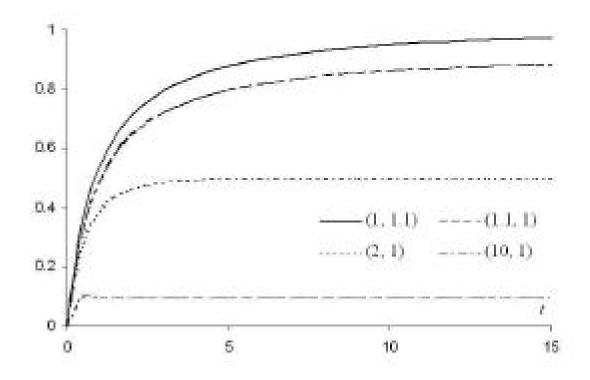
$$p_n(t) = (1 - \mu g(t))(1 - \lambda g(t))(\lambda g(t))^{n-1}$$

with
$$g(t) = (\exp((\lambda - \mu)t))/(\lambda \exp((\lambda - \mu)t) - \mu)$$
 and

$$\mathbb{E}[N(t)] = \exp((\lambda - \mu)t)$$

 \Rightarrow depends on the sign of $\lambda - \mu$.

Probability of the time to extinction of the population for $n_0=1$ for different values of (λ,μ)



When $\mu > \lambda$, the extinction is certain.

When $\lambda > \mu$, even $\lambda >> \mu$, the probability of the extinction of the population is not zero.

Important properties. At time t, N(t)=n individual are present.

Next birth: The waiting time until the next birth is $\mathcal{E}[\lambda(n)]$.

Next death : The waiting time until the next death is $\mathcal{E}[\mu(n)]$.

Next event: The waiting time until the next event is

$$\min\{\mathcal{E}[\lambda(n)], \mathcal{E}[\mu(n)]\} = \mathcal{E}[\lambda(n) + \mu(n)].$$

Birth or death? The next event will be

a birth with probability :
$$\lambda(n)/[\lambda(n)+\mu(n)]$$

This process can be seen as two processes:

Population size. The sequence of the population size (regardless of the time) is a Markov chain with transition matrix $\Pi=$

$$\begin{pmatrix} & \ddots & & \ddots & & & \\ & \frac{\mu(n-1)}{\mu(n-1)+\lambda(n-1)} & & 0 & \frac{\lambda(n-1)}{\mu(n-1)+\lambda(n-1)} & & \\ & & \frac{\mu(n)}{\mu(n)+\lambda(n)} & & 0 & \frac{\lambda(n)}{\mu(n)+\lambda(n)} & \\ & & & \frac{\mu(n+1)}{\mu(n+1)+\lambda(n+1)} & & 0 & \frac{\lambda(n+1)}{\mu(n+1)+\lambda(n+1)} & \\ & & & & \ddots & & \\ & & & & & \ddots & & \end{pmatrix}$$

Waiting times between events are random $(X \sim \mathcal{E}[\lambda] \text{ then } X/n \sim \mathcal{E}[\lambda n])$

⇒ The waiting times between events, and the sequences of the population sizes can be simulated independently.

Transition rate matrix. Both transition probabilities (Π) and waiting times (exponential) can be summarized in the transition rate matrix $\mathbf{R}=$

$$\begin{pmatrix} & \ddots & & \ddots & & & \ddots & & & \\ & & \mu(n-1) & & -[\mu(n-1)+\lambda(n-1)] & & & \lambda(n-1) & & & \\ & & & \mu(n) & & -[\mu(n)+\lambda(n)] & & \lambda(n) & & & \\ & & & & \mu(n+1) & & -[\mu(n+1)+\lambda(n+1)] & & \lambda(n+1) & & \\ & & & & \ddots & & \ddots & \end{pmatrix}$$

Distribution at time t. The general form of the differential equation system is

$$\mathbf{p}'(t) = \mathbf{p}(t)\mathbf{R}$$
 where $\mathbf{p}(t) = [p_0(t) \quad p_1(t) \quad \dots \quad p_n(t) \quad \dots]$

and its solution is

$$\mathbf{p}(t) = \mathbf{p}(0) \exp(\mathbf{R}t) = \mathbf{p}(0) \exp(\mathbf{R})^{t}.$$

Stationary distribution. Stationary distributions are eigenvectors of ${f R}$ associated with a null eigenvalue.

Example of density-dependent birth process

Initial size : $N(0) = n_0$

Birth rate :
$$\lambda(n) = \lambda \left(1 - \frac{n}{n_{n_{\max}}}\right)$$

Death rate : $\mu(n) = \mu n$

Immigration rate $\gamma(n)=\gamma$

In presence of immigration, the state N(t)=0, is not absorbing.

Parameters : $n_0=1, n_{\mathrm{max}}=5, \lambda=1, \mu=0, \gamma=0$

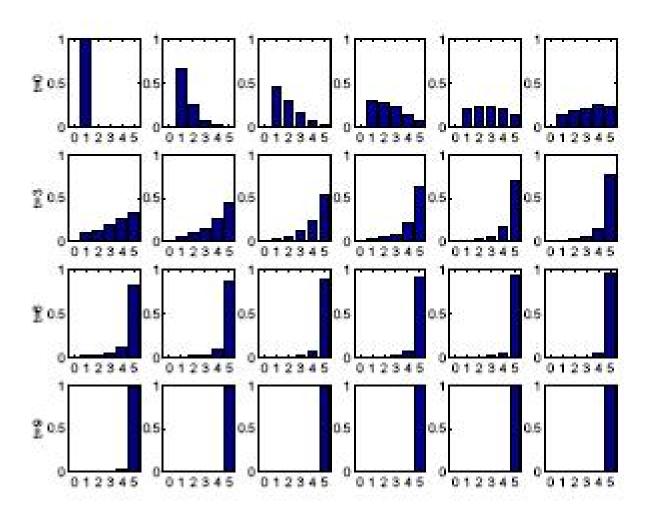
$$\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.8 & 0.8 & 0 & 0 & 0 \\ 0 & 0 & -1.2 & 1.2 & 0 & 0 \\ 0 & 0 & 0 & -1.2 & 1.2 & 0 \\ 0 & 0 & 0 & 0 & -0.8 & 0.8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Two stationary distributions :

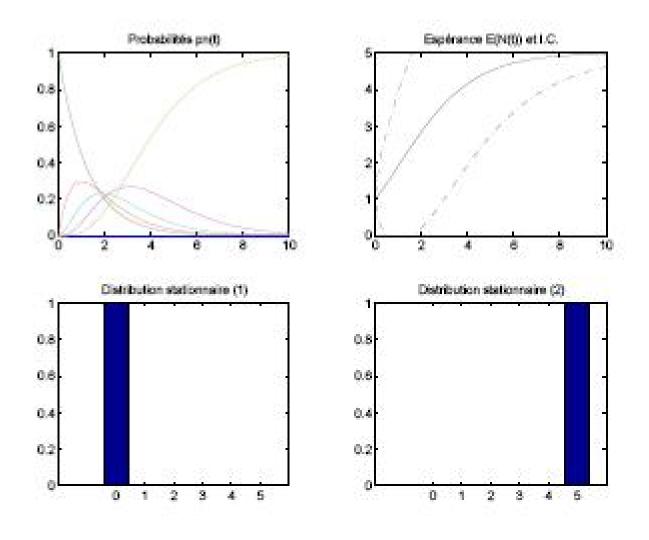
$$m{\mu} \ = \ [\ 1 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \] \ \ \ \ {
m i.e.} \ N(t) = 0$$
 $m{\mu}' \ = \ [\ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \] \ \ \ \ {
m i.e.} \ N(t) = n_{
m max}$

so the chain is reducible. (μ can not be reached from $n_0=1$.)

Distribution as a function of time.



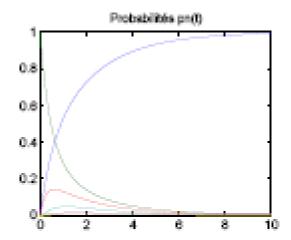
Mean, confidence intervals and stationary distributions :

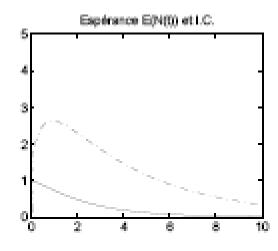


The population grows until it reaches n_{max} .

Birth and death (1)
$$n_0=1, n_{\max}=5, \lambda=1, \mu=1, \gamma=0$$

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1.8 & 0.8 & 0 & 0 & 0 \\ 0 & 2 & -3.2 & 1.2 & 0 & 0 \\ 0 & 0 & 3 & -4.2 & 1.2 & 0 \\ 0 & 0 & 0 & 4 & -4.8 & 0.8 \\ 0 & 0 & 0 & 0 & 5 & -5 \end{pmatrix}$$

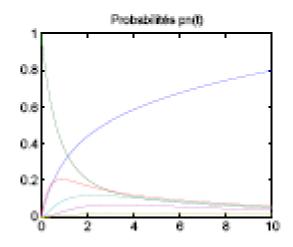


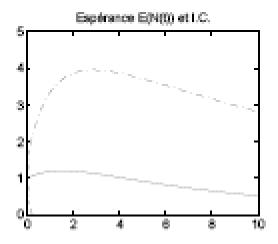


N=0 is an absorbing state toward which the process converges.

Birth and death (2)
$$n_0=1, n_{\mathrm{max}}=5, \lambda=1, \mu=0.5, \gamma=0$$

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0.5 & -1.3 & 0.8 & 0 & 0 & 0 \\ 0 & 1 & -2.2 & 1.2 & 0 & 0 \\ 0 & 0 & 1.5 & -2.7 & 1.2 & 0 \\ 0 & 0 & 0 & 2 & -2.8 & 0.8 \\ 0 & 0 & 0 & 0 & 2.5 & -2.5 \end{pmatrix}$$

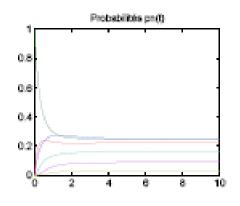


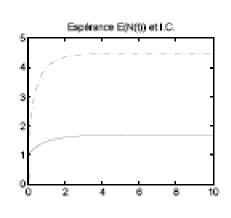


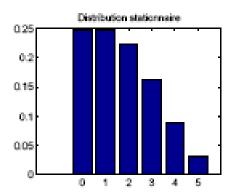
Reducing the death rate only delays the extinction of the population.

Birth, death and immigration $n_0=1, n_{\max}=5, \lambda=1, \mu=1, \gamma=1$

$$\mathbf{R} = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2.8 & 1.8 & 0 & 0 & 0 \\ 0 & 2 & -4.2 & 2.2 & 0 & 0 \\ 0 & 0 & 3 & -5.2 & 2.2 & 0 \\ 0 & 0 & 0 & 4 & -5.8 & 1.8 \\ 0 & 0 & 0 & 0 & 5 & -5 \end{pmatrix}$$







EXAMPLE: MOLECULAR EVOLUTION MODELS.

Aim

- Estimate times since divergence between species
- Reconstruct the phylogenetic tree

Data

– For each specie i=1..n, we have one nucleotide sequence

$$\mathbf{S}_i = (S_{i1}, \dots S_{i\ell})$$

 S_{ix} = nucleotide in position $x=1..\ell$

The
$$n$$
 sequences $(\mathbf{S}_1,\dots\mathbf{S}_n)$ are aligned : $egin{bmatrix} S_{11}&\dots&S_{1x}&\dots&S_{1\ell}\ dots&dots&dots&dots\ S_{i1}&\dots&S_{ix}&\dots&S_{i\ell}\ dots&dots&dots&dots\ S_{n1}&\dots&S_{nx}&\dots&S_{n\ell}\ \end{bmatrix}$

MOLECULAR EVOLUTION MODELS

Model

- Nucleotides are supposed to evolve (i.e. mutate) independently
- according to a continuous time Markov process with state space

$$\mathcal{A} = \{a, c, g, t\}$$

and transition rates

$$\mathbf{R} = \left(egin{array}{cccc} & - & r(\mathtt{a},\mathtt{c}) & r(\mathtt{a},\mathtt{g}) & r(\mathtt{a},\mathtt{t}) \ & r(\mathtt{c},\mathtt{a}) & - & r(\mathtt{c},\mathtt{g}) & r(\mathtt{c},\mathtt{t}) \ & r(\mathtt{g},\mathtt{a}) & r(\mathtt{g},\mathtt{c}) & - & r(\mathtt{g},\mathtt{t}) \ & r(\mathtt{t},\mathtt{a}) & r(\mathtt{t},\mathtt{c}) & r(\mathtt{t},\mathtt{g}) & - \end{array}
ight)$$

 $\pi_{ab}(t)=$ transition probability from nucleotide a to nucleotide b in a time t.

Hypothesis. All transition rates are equal:

$$\mathbf{R} = \begin{pmatrix} - & \alpha & \alpha & \alpha \\ \alpha & - & \alpha & \alpha \\ \alpha & \alpha & - & \alpha \\ \alpha & \alpha & \alpha & - \end{pmatrix}$$

Property.

$$\pi_{aa}(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}, \qquad \pi_{ab}(t) = \frac{1}{4}\left(1 - e^{-4\alpha t}\right)$$

Estimation of the divergence time.

$$\hat{t}_{ij} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} p_{ij} \right)$$

where p_{ij} is the proportion of different nucleotides between sequences i and j