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Poisson Process

The process N(t) counts the number of events which occurred between time 0 and t.

One assumes that N(0) = 0.

Denoting T1, T2, . . . the times at which the event occurred, we have that the process N(t)

increases with 1 at each time.

N(t) = 0 if t < t1,

= 1 if t1 ≤ t ≤ t2,
...

= k if tk ≤ t < tk+1,

etc.



Poisson Process

Examples.

– Arrivals of customers at a ticket office.

– Bus arrivals at a station.

Definition. {N(t), t > 0} is a Poisson process with intensity λ if it satisfies the two following

hypotheses :

Markov Process : Events occur independently from each other.

The future only depends on the past via the current value of N(t).

Homogeneity : The probability for an event to occur between t and t+ ∆t proportional to ∆t

(for ∆t small) :

Pr{N(t+ ∆t)−N(t) = 1} = λ∆t+ o(∆t).

where λ is constant⇒ the process is homogeneous in time.



Poisson Process

Differential equation system. For ∆t small, we have
Pr {N(t+ ∆t)−N(t) = 1} = λ∆t+ o(∆t),

Pr {N(t+ ∆t)−N(t) = 0} = 1− λ∆t+ o(∆t),

Pr {N(t+ ∆t)−N(t) ≥ 2} = o(∆t).

⇒ This last equation means that two events (or more) do not occurred in a same time.

Consequence. Denoting pn(t) = Pr {N(t) = n}, we get

pn(t+ ∆t) = pn(t) + λ∆t [pn−1(t)− pn(t)] + o(∆t)

which implies

p
′
n(t) = λ [pn−1(t)− pn(t)] ,

and

p
′
0(t) = −λp0(t).



Poisson Process. Main properties

Distribution of the count N(t). The solution of the preceding systems implies that N(t) has a

Poisson distribution :

pn(t) = e
−λt(λt)

n

n!
⇒ N(t) ∼ P(λt).

As a consequence : E[N(t)] = λt, V[N(t)] = λt.



Poisson Process. Main properties

Interpretation of the intensity λ.

By taking t = 1, we have that N(1) ∼ P(λ) and

E[N(1)] = λ,

So λ is the number of events in average which occurred in a time unit.

We have that N(t) tends to infinity

Pr {N(t) =∞} −→ 1



Poisson Process. Main properties

Property of the times T1, . . . , Tn.

Suppose that n events occur between [0, t].

Recall that Tk is the time at which the event k occurs, then we have that

the distribution of the times T1 < . . . < Tn

is an uniform on the interval [0, t].



Poisson Process.

Waiting times. Let us denote ∆Ti = (Ti+1 − Ti) the time between two events,

∆Ti = (Ti+1 − Ti) ∼ E(λ) ⇒ Pr{∆Ti > t} = exp(−λt)

As a consequence : E(∆Ti) = 1/λ, V(∆Ti) = 1/λ2 so 1/λ is the average time between two

events.

Distribution of Ti. We can derive that

Ti ∼ γ(i, λ) E(Ti) = i/λ



Poisson Process.

Property of the exponential distribution.

Conditional distribution :

Pr {T > s+ t |T > s} = Pr {T > t} .

The absence of memory (Markov) implies the ’Bus stop’ paradox :

E[T − s |T > s] = E[T ]

⇒ Whatever the time at which we arrive at the bus station, the mean waiting time is the mean

time.



Poisson Process.

Estimator of λ ?

λ̂ =
N(t)

t
,

i.e. the number of events on the interval [0, t] over the considered time interval.

Likelihood.

V (N(t);λ|N(t) = n) = λ
n
exp

[
λ(

n∑
i=1

−(ti − ti−1))

]
exp [λ− (T − tn))]

⇒ λ̂ is the maximum likelihood estimator.



Application to Genetic Distance

Statistical model

Crossing-over occur along the chromosome according to an (homogeneous) Poisson process with

intensity λ.

N(t) = number of crossing over occurring in a portion of length t :

N(t) ∼ P(λt).

Probability of common origin for 2 loci (at distance t).

p(t) = Pr{N(t) is even} =
∑
k

Pr{N(t) = 2k}.

Remarking that eλt + e−λt = 2
∑

k≥0

[
(λt)2k/2k!

]
we get

p(t) =
(

1 + e−2λt
)
/2

which goes to 1/2 when t goes to infinity.



Application to Genetic Distance

Recombination probability. The ’recombination probability’ is the probability for two loci (at distance

t) to be issued from different parents : q(t) = 1− p(t).

For a small t, we have

q(t) =
1

2

(
1− e−2λt

)
' λt

CentiMorgan (cM) definition. One cM is the distance d such as q(d) = 1%, i.e.

d = −
log(0.98)

2λ
.

If t is measured in cM, owe get

q(t) =
1

2

{
1− exp

[
2λt

log(0.98)

2λ

]}
=

1

2

(
1− 0.98

t
)
.

which also goes to 1/2 when t goes to infinity.



Pure Birth Process

Model The N(t) process counts the number of births between 0 and t. The intensity of the process

depends on the population size at time t :

Pr {N(t+ ∆t) = N(t) + 1} = λ[N(t)]∆t+ o(∆t),

and

Pr {N(t+ ∆t) = N(t) + 2} = o(∆t), no more births at the same time

where λ(n) is some given function.

– The process is always without memory : the number of birth before t does not affect the

number of births after t,

– The process is not homogeneous in time (λ(n) could depends on n)



Pure Birth Process

Different function λ(n) :

Poisson process : λ(n) = λ.

Linear birth process : λ(n) = λn proportional to the population size.

Quadratic birth process : λ(n) = λn2 proportional to the number of couples

in the population.

Density dependent : λ(n) = λn
(

1− n
nnmax

)
nnmax is the maximal capacity of the

environment.



Pure Birth Process

Case of linear birth process

Distribution of N(t) ?

Solving a differential equation system, we get

pn(t) =
( n− 1

n0 − 1

)(
e
−λt
)n0

(
1− e−λt

)n−n0
,

which means that the population size at time t has a binomial negative distribution : N(t)− n0 ∼
NB

(
n0, e

−λt),
with 1− e−λt is the probability for an individual to be born in [0, t]



Pure Birth Process

E[N(t)] = n0e
λt

consistent with the

exponential growth

deterministic model.

V[N(t)] = n0e
λt(eλt − 1)



Pure Birth Process

Waiting times ?

Property of the exponential distribution : distribution of the minimum.

Let X ∼ E(λ) and Y ∼ E(µ) be 2 independent random variables and Z their minimum :

Z = inf(X,Y ),

we have
(i) Z ∼ E(λ+ µ);

(ii) Pr{Z = X} =
λ

λ+ µ
, Pr{Z = Y } =

µ

λ+ µ
.



Pure Birth Process

Waiting time

– N(t) individuals are present at time t.

– Each of them (numbered i = 1..N(t)) will give birth to a new individual in random time Ti

with exponential E(λ) distribution.

– Next birth will occur at time

t+ min
i=1..N(t)

Ti

– The waiting time until the next birth is distributed as the minimum of N(t) independent

exponential E(λ) random times. It is hence distributed as :

E[λN(t)] ⇒ Mean waiting time :
1

λN(t)
Counting process. At each time, the population size increases with 1.



Pure Birth Process

Estimator of λ

The maximum likelihood estimator is

λ̂ =
N(t)− n0

n0t+
∑N(t)−n0

i=1 (t− ti)

N(t)− n0 events on [0, t] and

– n0 live on [0, t],

– 1 lives on [t1, t],

– . . .

– 1 lives on [tN(t)−n0
, t]



Pure Death Process

Model : Linear Death intensity µ(n) = µ× n

Starting with n0, the death rate is proportional to the population size :

Pr {N(t+ ∆t) = N(t)− 1} = µN(t)∆t+ o(∆t),

Survival time. Each individual stays alive an exponential E(µ) time so it has probability e−µt to be

still alive at time t.

Population size has a binomial distribution :

N(t) ∼ B(n0, e
−µt

) ⇒ pn(t) =
(n0

n

)
e
−nµt

(
1− e−µt

)n0−n
.

Waiting times. The waiting time until the next has an exponential E[µN(t)] distribution.

Counting process. At each time, the population size decreases with 1.



Pure Death Process

Time to extinction

Let denote T0 the time to extinction of the population, we have that

Pr {T0 ≤ t} = (1− e−µt)n0

Mean Time to extinction

E[T0] = E[∆T0 + ∆T1 + . . .+ ∆Tn0−1] = (1/µ)× (0.577 + log(n0))

Estimation of µ

µ̂ =
n0 −N(t)

(n0 −N(t))t+
∑N(t)

i=1 ti



Birth and Death Process

Model. Linear intensities.

Both probabilities to observe either a death or a birth between t and t+ ∆t are proportional to ∆t

and to the population size N(t)

Differential equation system. Following the preceding models, we get

pn(t+ ∆t) = pn(t)× [1− n(λ+ µ)∆t]

+pn−1(t)× (n− 1)λ∆t

+pn+1(t)× (n+ 1)µ∆t

+o(∆t).

which implies

p
′
n(t) = −n(λ+ µ)pn(t) + (n− 1)λpn−1(t) + (n+ 1)µpn+1(t)

.... difficult, but solvable.



Birth and Death Process

Remark : other intensities

Other intensities λ(n) and µ(n) (quadratic, density-dependent, etc.) can be considered.

We then get the general differential equation system

p
′
n(t) = −[λ(n) + µ(n)]pn(t) + λ(n− 1)pn−1(t) + µ(n+ 1)pn+1(t)

which is not solvable in a close form in general.

⇒ The system can yet be studied using computer simulations.



Birth and Death Process

Case of an initial population n0 = 1. Solving the differential equation system, we get

p0(t) = µg(t) = probability of extinction before t

pn(t) = (1− µg(t))(1− λg(t))(λg(t))n−1

with g(t) = (exp((λ− µ)t))/(λ exp((λ− µ)t)− µ) and

E[N(t)] = exp((λ− µ)t)

⇒ depends on the sign of λ− µ.



Birth and Death Process

Probability of the time to extinction of the population for n0 = 1 for different values of (λ, µ)

When µ > λ, the extinction is certain.

When λ > µ, even λ >> µ, the probability of the extinction of the population is not zero.



Birth and Death Process

Important properties. At time t, N(t) = n individual are present.

Next birth : The waiting time until the next birth is E[λ(n)].

Next death : The waiting time until the next death is E[µ(n)].

Next event : The waiting time until the next event is

min{E[λ(n)], E[µ(n)]} = E[λ(n) + µ(n)].

Birth or death ? The next event will be

a birth with probability : λ(n)/[λ(n) + µ(n)]

a death with probability : µ(n)/[λ(n) + µ(n)]



Birth and Death Process

This process can be seen as two processes :

Population size. The sequence of the population size (regardless of the time) is a Markov chain with

transition matrix Π =

. . . . . . . . .
µ(n−1)

µ(n−1)+λ(n−1) 0 λ(n−1)
µ(n−1)+λ(n−1)

µ(n)
µ(n)+λ(n) 0 λ(n)

µ(n)+λ(n)
µ(n+1)

µ(n+1)+λ(n+1) 0 λ(n+1)
µ(n+1)+λ(n+1)

. . . . . .



Waiting times between events are random (X ∼ E[λ] then X/n ∼ E[λn])

⇒ The waiting times between events, and the sequences of the population sizes can be simulated

independently.



Birth and Death Process

Transition rate matrix. Both transition probabilities (Π) and waiting times (exponential) can be

summarized in the transition rate matrix R =
. . . . . . . . .

µ(n− 1) −[µ(n− 1) + λ(n− 1)] λ(n− 1)

µ(n) −[µ(n) + λ(n)] λ(n)

µ(n+ 1) −[µ(n+ 1) + λ(n+ 1)] λ(n+ 1)
. . . . . .



Distribution at time t. The general form of the differential equation system is

p′(t) = p(t)R where p(t) = [ p0(t) p1(t) . . . pn(t) . . . ]

and its solution is

p(t) = p(0) exp(Rt) = p(0) exp(R)
t
.

Stationary distribution. Stationary distributions are eigenvectors of R associated with a null eigenvalue.



Examples

Example of density-dependent birth process

Initial size : N(0) = n0

Birth rate : λ(n) = λ
(

1− n
nnmax

)

Death rate : µ(n) = µn

Immigration rate γ(n) = γ

In presence of immigration, the state N(t) = 0, is not absorbing.



Examples

Parameters : n0 = 1, nmax = 5, λ = 1, µ = 0, γ = 0

R =



0 0 0 0 0 0

0 −0.8 0.8 0 0 0

0 0 −1.2 1.2 0 0

0 0 0 −1.2 1.2 0

0 0 0 0 −0.8 0.8

0 0 0 0 0 0


Two stationary distributions :

µ = [ 1 0 0 0 0 0 ] i.e. N(t) = 0

µ
′

= [ 0 0 0 0 0 1 ] i.e. N(t) = nmax

so the chain is reducible. (µ can not be reached from n0 = 1.)



Examples

Distribution as a function of time.



Examples

Mean, confidence intervals and stationary distributions :

The population grows until it reaches nmax.



Examples

Birth and death (1) n0 = 1, nmax = 5, λ = 1, µ = 1, γ = 0

R =



0 0 0 0 0 0

1 −1.8 0.8 0 0 0

0 2 −3.2 1.2 0 0

0 0 3 −4.2 1.2 0

0 0 0 4 −4.8 0.8

0 0 0 0 5 −5



N = 0 is an absorbing state toward which the process converges.



Examples

Birth and death (2) n0 = 1, nmax = 5, λ = 1, µ = 0.5, γ = 0

R =



0 0 0 0 0 0

0.5 −1.3 0.8 0 0 0

0 1 −2.2 1.2 0 0

0 0 1.5 −2.7 1.2 0

0 0 0 2 −2.8 0.8

0 0 0 0 2.5 −2.5



Reducing the death rate only delays the extinction of the population.



Examples

Birth, death and immigration n0 = 1, nmax = 5, λ = 1, µ = 1, γ = 1

R =



−1 1 0 0 0 0

1 −2.8 1.8 0 0 0

0 2 −4.2 2.2 0 0

0 0 3 −5.2 2.2 0

0 0 0 4 −5.8 1.8

0 0 0 0 5 −5



µ = [ 0.247 0.247 0.22 0.16 0.09 0.03 ]



Example : Molecular Evolution Models.

Aim

– Estimate times since divergence between species

– Reconstruct the phylogenetic tree

Data

– For each specie i = 1..n, we have one nucleotide sequence

Si = (Si1, . . . Si`)

Six = nucleotide in position x = 1..`

– The n sequences (S1, . . . Sn) are aligned :



S11 . . . S1x . . . S1`

... ... ...

Si1 . . . Six . . . Si`
... ... ...

Sn1 . . . Snx . . . Sn`





Molecular Evolution Models

Model

– Nucleotides are supposed to evolve (i.e. mutate) independently

– according to a continuous time Markov process with state space

A = {a, c, g, t}

– and transition rates

R =


− r(a, c) r(a, g) r(a, t)

r(c, a) − r(c, g) r(c, t)

r(g, a) r(g, c) − r(g, t)

r(t, a) r(t, c) r(t, g) −


πab(t) = transition probability from nucleotide a to nucleotide b in a time t.



Example : Juke and Cantor Model

Hypothesis. All transition rates are equal :

R =


− α α α

α − α α

α α − α

α α α −



Property.

πaa(t) =
1

4
+

3

4
e
−4αt

, πab(t) =
1

4

(
1− e−4αt

)
Estimation of the divergence time.

t̂ij = −
3

4
ln

(
1−

4

3
pij

)

where pij is the proportion of different nucleotides between sequences i and j


